
TENNIS
BUDDY

BIG IDEAS

Tennis Buddy is capable of:
● Autonomously navigating around the court
● Detect and collect tennis balls
● Avoid fixed and dynamic obstacles around the court
(net, ball holders, players)
● Ease player experience and maximize court time

Hardware Overview
Robot Base: RoverRobotics MITI 65
Sensor: RPLidar S2/ IMU/ RealSense D435i
Compute: NVIDIA Jetson Nano
Front Ball Collector Module：

Aluminum-extrusion frame with side plates for
structural support
Motor-driven roller to pull tennis balls into the
robot
Hopper for storing collected balls
Mounts for camera and LiDAR for perception
on the intake line
Front casters that support the module and
improve stability
Bolted interface to the RoverRobotics base for
easy removal/adjustment

Software Architecture
Goal: Enable Tennis Buddy to map the court, navigate safely:
● Follow predefined waypoints
● Reach and collect tennis balls detected by the camera.

Primary Processes:
Map Generation: Mapping the testing space using IMU, Lidar, SLAM
Autonomy: path planning (Nav2)
Task Logic: State Machine Driven
Perception: RealSense Camera, YOLOv8 trained on tennis balls
InterNode Communication: ROS2 Msgs on: ball positions,
ball-to-goal bridge, exploration with waypoints

System
Overview

Mapping
The robot drives around a space
once at startup to establish an
initial map.
For each future run, the robot can
be run from the corner of the court
without any user calibration.

RVIZ: Visualization and Debugging

Planning
Bridge

Subscribes the ball depth in
camera_link
Transforms ball position into the
global map frame using TF
(camera_link → base_link →
odom → map)
Outputs: ball positions
(goal_pose) in map frame

Waypoints
waypoints -> scan ->

ball_collector -> waypoints
The Goal: Move around the court and scan at
each point to detect balls and collect them.

System Util Choices

CONTROLS/ NAVIGATION
To maximize the capacities of the Jetson,
controls and navigation processing is done on
the CPU.

The model was moved to the GPU to improve
inference speed and also allow CPU processing
for the navigation pipeline.

DETECTION MODEL

[83%@1344,79%@1344,76%@1344,80%@134
4,89%@1344,90%@1344] GR3D_FREQ 0%
cpu@50.625C soc2@47.843C soc0@48.718C
gpu@50.343C tj@50.687C soc1@50.687C
VDD_IN 7644mW/7685mW VDD_CPU_GPU_CV

RAM 4695/7621MB (lfb 5x4MB) SWAP 0/3810MB (cached
0MB) CPU
[33%@1497,44%@1497,61%@1497,48%@1497,80%@1
344,21%@1344] GR3D_FREQ 98% cpu@53.218C
soc2@50.562C soc0@51.531C gpu@54.125C

Conclusion: A major choke-point was that all systems were using the CPU,
and the perception pipeline was causing behavioural issues for the planning
and controls pipeline.

Perception

https://docs.google.com/file/d/13kbb2iQs9VRJ2VGRjrMHzbXqPrNHjV-m/preview
https://docs.google.com/file/d/1q_zlISWeWhU8KtNKgNidFR-DsesVy3zh/preview

Basic Methodology

https://docs.google.com/file/d/1X3_PTQsQyI3v5aUwQ08cxUA-GLx_prZt/preview

Pre-Demo

https://docs.google.com/file/d/1v-RVPRsdNhZfxCTgXmlbDriV4E3Bxqou/preview

Demo

Why Ball Collecting So Hard?
● Yolo accuracy degrades when map is larger, and when the robot is

dynamical moving (with only one camera)

● FOV with one camera is limiting

● Nav2 path planning success rate decreases in tennis map (obstacles

with two narrow passages aside).

Future
Next Steps:

Move to Jetson AGX Orin (flashed)
Add dense waypoint coverage of the court
Exploration mode without a pre-loaded map
User interaction & configuration tools
Player aware operation modes (no players/ players on court)
Increase number of cameras

Further Features for Expansion:
Holders for lifting camera and LiDAR
Return balls to players
Support for all types of tennis courts

THANKS!

