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Abstract
The problem

Current state:
BP monitoring is episodic
and intrusive (cuff)

The gap:

Hypertension is dynamic. A
shapshot once in a while
misses the full picture.

Our solution:

An embedded DL enabled device
with the capability of continuous,
passive monitoring using a single
optical sensor.

Why Embedded ML?
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Bandwidth:
We don't stream raw data
we only output the final BP value.

Latency:
Instant Feedback.
Processes 100Hz local data for real-time display

Energy:
Optimized for low-power micro-controllers..

Reliability:
Works fully offline (vital for medical devices).

Privacy:
Raw biometric data never leaves the device.
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Evolution (Approach)

Phase 1: Beat-Level
LSTM

Idea:

Analyze individual heartbeats
using a Long Short-Term
Memory network.

Verdict:

Failed

Too susceptible to noise and
lacked sufficient context for
accurate predictions. (Mean
Absolute Error ~21 mmHg).

Phase 2: Pulse
Transit Time (PTT)

Idea:

Correlate the timing difference
between ECG and PPG signals
to derive blood pressure.

Verdict:

Accurate but Impractical.
Required two distinct sensors
(e.g. chest ECG and finger PPG),
making it unsuitable for a
single-sensor, wearable device.

Phase 3: Window-
Level Deep Learning

Idea:

Analyze 8-second windows of
photoplethysmography (PPG)
blood flow signals.

Verdict:

Success

This approach allowed the
model to identify and leverage
trends within the data,
effectively filtering out transient
noise. This became the
foundation for our current
robust solution.
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Embedded Device Container (e.g., Raspberry Pi / Nano 33 BLE)

Preprocessing Deep Learning

Pipeline Model Architecture FOeTRIGRe=S1ig

Input Layer

(800x1) User Interface /

Display

Sensor Node

* Bandpass Filtering 1D CNN Layers
(0.5-8Hz) (Feature Extraction)

« Sliding Window Prediction
Segmentaﬁon BiLSTM Layers Smoothlng/Averaglng

8s window, 4s T |D '
Ewerlap) IERon LDy R cs) Output Formatting

Systolic:
120 mmHg
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MAX30101
(Raw PPG Signal,

100Hz) : :
Diastolic:

80 mmHg

* Min-Max Attention Mechanism
Normalization Block

Fully Connected
Dense Layers
(Regression Head)
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The AI engine (Model and preprocessing)

The Signal Pipeline (Preparing the Data) The Architecture (CNN-BiLSTM-Attention)

Resampling:
upscaled sensor data
(100Hz) to 125Hz to match

MIMIC training data.
v Feature Temporal Additive
Filtering: Extractor Context MAtt‘:‘“t'_o“
Butterworth Band-pass (0.5- Selnklnlnn
8 Hz) to remove motion ) : _
artifacts and high-freq. noise. 1D CNN BiLSTM weights . s
extracts analyzes the specnﬁc_parts egression
\ morphological Bd history of the gd Of the signal, fgd Head predicts
Windowing: shape features wave (past & allowing the SBP and DBP
8-second sliding windows (slopes, dicrotic [l future context) Jll model to focus il simultaneously.
with a 4-second hop no‘th). to determine on valid beats
(Updates every 4s). stability. and ignore
v noise.

Polarity Inversion:
(flipped the signal) to match
the peak direction of clinical

PPG.
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Methods - Embedded Implementation

Hardware: Raspberry Pi Zero.

Sensor: MAX30101 (Reflective PPG).
« Configured in IR-only mode (High sensitivity).
« 18-bit ADC resolution for detecting micro-changes in
blood volume.

The Inference Loop (Python Pipeline)
« Acquisition: Streams Raw IR, Red, and Green data.
« Auto-Preprocessing: Real-time signal cleaning and
Z-score normalization.
« Inference: The CNN-BILSTM model runs on the live
8-second window.
« Result: Displays Per-window BP estimates.

Performance Status

« Latency: System runs in Near
Real-Time.
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« Morphology: Live sensor il b

waveforms successfully
match the shape of the
MIMIC training data
(validating our
preprocessing).
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Results - Accuracy & Validation

Results (Test Hist Gradient CNN (PPG+ECG Window level CNN+BI-
Boosting beat level. LSTM .

dataset) dataset) CNN (PPG only) LSTM+Attention
regressor

MAE(Systolic BP) 14.69 21 17.83 9 7.8

AnEEEyEEle 19 25.6 2374 12.2 11

BP)

S El(RlEsiellie 7.45 8.8 8.19 4.5 4

BP)

SRRl 10.11 117 11.89 6.8 6.3

BP)

Results (Live) SBP DBP

MAE (30 readings) 10.6 12.8

Mean bias -3.1 -12
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&} Cuffless Blood Pressure Demo

Live Demo

ou can rum another measurement -3"'_\.".‘[‘15.

Results

Meam SEF Mean DBEP

125.7 mmHg 72.9 mmHg

Omiginal Fs = 98.0 Hz - Resampled to 125 Hz - Durati

PPG Waveform (filtered)

Source: Gemini nano banana pro
Per-window predictions
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Place your finger on the MAX30101 sensor and dick Start measurement. You'll get a PPG waveform and SBP/DEBP estimate.
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Challenges and future work

Data Challenges:
Public datasets (MIMIC) are from sedated hospital patients; real-world
users move around (Motion Artifacts).

The "Calibration Problem™
Deep learning learns general population trends but struggles with
individual offsets (hence the DBP bias).

Motion Artifacts:
Hand movement destroys the optical signal. (Requires stationary
measurement).

Hardware Challenges:
Sensitive to contact pressure (pressing too hard cuts off blood flow, too
light creates noise).

Future Work:

« Sensor Fusion: Add Accelerometer (IMU) to
cancel out motion noise.

« Calibration: Implement a "one-time
calibration" step to fix the DBP offset.
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