
CatMotion 
 Cat Behavior Classification

Final Demo

Lin Zhan, Junrui Zhao
1



Project Overview

● Goal: Develop a wearable device that classifies cat behaviors (e.g., rest, walk, 

feed) using motion sensor data.

● Type: New product: a cat-mounted smart collar system.

● Motivation: Catch early changes that may signal cat health issues.

● Objective: Enable continuous, real-time cat behavior tracking for activity analysis 

and health monitoring.

● Target users: Cat owners (especially busy owners), vets, and rescue groups who 

need continuous activity and behavior tracking.
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Why use Embedded ML? BLERP model

● B - Bandwidth
○ Our system processes raw IMU data locally on the Arduino Nano 33 BLE Sense.

● L - Latency
○ Immediate recognition of cat activities, enabling future extensions like alerting or live tracking.

● E - Economics
○ The Nano 33 BLE Sense is optimized for low-power operation, allowing the collar to run for 

extended periods and thus reducing the overall cost.

● R - Reliability
○ The collar continues to classify behaviors offline, without depending on a network.

● P - Privacy
○ No cloud uploads of pet activity, preserving user and pet privacy.
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Block Diagram
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Methods - Data collection

● Dataset: public + self-collected
● Public dataset: Domestic cat accelerometer data calibrated with behaviors 

(Dryad repository).
● Self-collected data using Arduino Nano 33 BLE Sense recording 3-axis 

accelerometer readings at 40 Hz.



Methods - ML models

● Knowledge Distillation

● Train a strong Random Forest (teacher) on extracted feature vectors

● Teacher outputs soft class probabilities (not just hard labels)

● Train a lightweight neural network (student) via knowledge distillation

● Loss = (1 − α) · cross-entropy (hard labels) + α · distillation loss (match 

teacher distribution with temperature T)

● Export the trained student as TensorFlow Lite with INT8 quantization 

for deployment



Methods - Embedded systems implementations

Our system consists of an Arduino Nano 33 BLE Sense running a custom .ino sketch and a 

Python script on PC using bleak to receive BLE notifications.

● Arduino collects 3-axis accelerometer data continuously at the model’s 
required sampling rate

● Maintains a sliding inference window (predicts every 0.5 seconds)
● Buffers all predictions inside a 4-second smoothing window
● Applies majority voting across the 4-second window to generate a stable, 

smoothed behavior label
● Sends the final 4-second predicted label to the laptop via BLE notifications 

(and optionally Serial)
● Python script (BLE/bleak) receives, displays, and logs predictions in real time



Results
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● Overall performance: 

Accuracy 74.7%, with AUC 

0.93 and weighted F1 0.78 

→ good separability.

● Strong classes: Feed 91.7% 

(F1 0.87), Rest 81.3% (F1 

0.77) → reliable for the most 

common behaviors.

● Main error case: Walk ↔ 

Rest confusion (Walk→Rest 

28.8%) — expected for 

IMU-only signals

      Validation                         Testing



Deployment
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https://docs.google.com/file/d/1O1ldRkQ3ntfj2fUrn9aFG4TOxiMsrT1h/preview


Challenges

● Rest vs. slow walk: “Rest” is not pure stillness, so it overlaps with slow walk. 

This is a hard boundary case that our model may not fully resolve.

● Cross-cat variation (different cat size) may hurt generalization. we currently 

cannot test on many different cats/breeds/sizes, so it is unclear whether the 

model stays steady when the cat body size and collar fit change a lot.

● Behavior transitions and mixed windows. Real life is continuous; many 

windows contain two behaviors, which makes precise separation and clean 

classification harder.
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Live Demo



Thank you


