Offline Storytelling
Companion

Shreesh Tripathi ¢ Vignesh Natarajan

What

An offline bedtime-story companion on Jetson Orin Nano that generates and narrates
kid-safe stories using a finy LLM + STT/TTS.

New vs. Enhancement
New product built from open-source components (LLM, TTS) with a safety-first pipeline.

Objective
Deliver safe, customizable, internet-free storytelling with <&s start-to-speech latency via
streaming.

For whom
Children (end users), parents/educators (buyers/custodians).

Compute platform:
* NVIDIA Jetson Orin (e.g., Orin NX) running the L4T-ML GPU container with CUDA enabled.

Audio 1/0O:
« USB microphone for speech input.
- USB speakers / USB audio DAC for story playback.

Planned extensions:

+ GPIO push-button to trigger interactions and a status LED to indicate system
state (recording, thinking, speaking).

Language & framework:
* Python running on the Jetson with PyTorch using the GPU.

Al models:

« Whisper Tiny for turning speech into text (speech-to-text).

* TinyLLaMA 1.1B Chat for generating the story (language model).

« Coqui TTS for turning the story text back into audio (text-to-speech).

Audio handling:

* Uses simple Python audio libraries to record from the USB mic, save/load WAV files, and play
back through the USB speakers.

App logic:
* Python scripts that connects all steps: listen — transcribe — generate story — speak,
plus a text-only mode for development without audio.

User experience:

« Child speaks a short prompt (optionally starting with a wake word “storybot”), the system
transcribes it, generates a 5-10 sentence wholesome story with a clear moral, and reads
it aloud.

Latency-focused design:

« Story is generated and spoken sentence-by-sentence (sireaming), so audio output starts
quickly instead of waiting for the full story.

Modes:

+ Audio mode for real interactions, text-only mode for development/debugging (no
mic/speaker required).

Added an additional thread:

e Generation thread: runs TinyLLOMA and pushes text chunks into the streamer.

e Main thread: drains the streamer, finds sentence boundaries, engueues sentences for TTS,
and records stafs.

e TIS worker thread: pulls sentences from the queue and plays them, so audio no longer
blocks streaming.

Architecture

Audio path

Record + resample 16k

Whisper Tiny STT (CUDA)

Wake-word trim ('storybot')

Story generation

Build chat prompt

TinyLLaMA 1.1B (CUDA, fp16)

Post-process [safety filter
(clean, moderate, format)

Stream sentences
(top_p=0.9, temp=0.8)

Speech synthesis

‘ Coqui TTS ‘

Play audio (resample +
gain)

Captured run metrics for an example run:

Record audio: 10 s (fixed recording window)

First audio after start: 3.25 ¢

STT: 1.97s

LLM stream: TTFT=0.52s, first sentence=0.86s, tokens=253 @ 10.5 tok/s)
TTS: 14 sentences, total 155.35 s (avg 11.10 s/sentence)

TTFT vs Prompt Length

TTFT vs prompt length (TinyLLaMA, GPU)

“
=
k-
=]
]
)
2
=
8
Q
E
—_

100 150
Prompt length (tokens)

Accuracy Framework, n = 5000

Story quality and safety criteria

Factuality

Repetition control

Age-safety

Creativity

Coherence

2 3
Score (1-5)

Latency breakdown (voice end-to-end)

Total 327.2s
350 4
300 4
250 -
Record e Initial numbers. TTS was
5 200 STT :
2 — LM TTFT hogging resources and
ko | LLM generate needed to be tweaked.
150 A TTS playback
100 4
50 -
0

Voice end-to-end

Distribution of Compute (Optimized)

Voice pipeline latency breakdown vs max_new_tokens

300} ™. Record

256
max_new_tokens

CPU%/C

Resource Utilization

MM L
AL

= GPU util (%)
e GPU temp (C)

e CPU max core (%)
CPU temp (C)

=
=
=
g
§

Power (mW)

—— RAM used (ME)
— SWAP used (MB)

— WDD_IN (mW)

-..MARMJ#MLJ

3 3
Minutes since start

Demo

Questions?

	Slide 1: Offline Storytelling Companion
	Slide 2: Quick Summary
	Slide 3: Technical details - Hardware
	Slide 4: Technical details - Software
	Slide 5: Technical Aspects
	Slide 6: Technical Aspects
	Slide 7: Architecture
	Slide 8: Metrics
	Slide 9: TTFT vs Prompt Length
	Slide 10: Accuracy Framework, n = 5000
	Slide 11: Distribution of Compute (Attempt 1)
	Slide 12: Distribution of Compute (Optimized)
	Slide 13: Resource Utilization
	Slide 14: Demo
	Slide 15: Questions?

