
Offline Storytelling 

Companion

Shreesh Tripathi • Vignesh Natarajan



Quick Summary

● What
An offline bedtime-story companion on Jetson Orin Nano that generates and narrates 

kid-safe stories using a tiny LLM + STT/TTS.

● New vs. Enhancement

New product built from open-source components (LLM, TTS) with a safety-first pipeline.

● Objective

Deliver safe, customizable, internet-free storytelling with <5s start-to-speech latency via 

streaming.

● For whom

Children (end users), parents/educators (buyers/custodians).



Technical details - Hardware

Compute platform:

• NVIDIA Jetson Orin (e.g., Orin NX) running the L4T-ML GPU container with CUDA enabled.

Audio I/O:

• USB microphone for speech input.

• USB speakers / USB audio DAC for story playback.

Planned extensions:

• GPIO push-button to trigger interactions and a status LED to indicate system 

state (recording, thinking, speaking).



Technical details - Software

Language & framework:
• Python running on the Jetson with PyTorch using the GPU.

AI models:
• Whisper Tiny for turning speech into text (speech-to-text).
• TinyLLaMA 1.1B Chat for generating the story (language model).
• Coqui TTS for turning the story text back into audio (text-to-speech).

Audio handling:
• Uses simple Python audio libraries to record from the USB mic, save/load WAV files, and play 

back through the USB speakers.

App logic:
• Python scripts that connects all steps: listen → transcribe → generate story → speak, 

plus a text-only mode for development without audio.



Technical Aspects

User experience:

• Child speaks a short prompt (optionally starting with a wake word “storybot”), the system 
transcribes it, generates a 5–10 sentence wholesome story with a clear moral, and reads 
it aloud.

Latency-focused design:

• Story is generated and spoken sentence-by-sentence (streaming), so audio output starts 
quickly instead of waiting for the full story.

Modes:

• Audio mode for real interactions, text-only mode for development/debugging (no 
mic/speaker required).



Technical Aspects

Added an additional thread:

● Generation thread: runs TinyLLaMA and pushes text chunks into the streamer.

● Main thread: drains the streamer, finds sentence boundaries, enqueues sentences for TTS, 

and records stats.

● TTS worker thread: pulls sentences from the queue and plays them, so audio no longer 

blocks streaming.



Architecture



Metrics

Captured run metrics for an example run:

● Record audio: 10 s (fixed recording window)

● First audio after start: 3.25 s

● STT: 1.97 s

● LLM stream: TTFT=0.52s, first sentence=0.86s, tokens=253 @ 10.5 tok/s)

● TTS: 14 sentences, total 155.35 s (avg 11.10 s/sentence)



TTFT vs Prompt Length



Accuracy Framework, n = 5000



Distribution of Compute (Attempt 1)

● Initial numbers. TTS was 

hogging resources and 

needed to be tweaked.



Distribution of Compute (Optimized)



Resource Utilization



Demo



Questions?


	Slide 1: Offline Storytelling Companion
	Slide 2: Quick Summary
	Slide 3: Technical details - Hardware
	Slide 4: Technical details - Software
	Slide 5: Technical Aspects
	Slide 6: Technical Aspects
	Slide 7: Architecture
	Slide 8: Metrics
	Slide 9: TTFT vs Prompt Length
	Slide 10: Accuracy Framework, n = 5000
	Slide 11: Distribution of Compute (Attempt 1)
	Slide 12: Distribution of Compute (Optimized)
	Slide 13: Resource Utilization
	Slide 14: Demo
	Slide 15: Questions?

