
18-448 TinyML Baseball Simulator Final Report
Belle Connaught, Elliot Clark

1. Abstract
Our project implements a real-time baseball detection and scoring system using YOLOv8 for object

detection and Bluetooth Low Energy (BLE) for external device communication. The system integrates a
webcam to capture live video frames, processes them with a pre-trained YOLOv8mmodel to detect baseballs,
and overlays detection results with bounding boxes and confidence scores. Simultaneously, a BLE client receives
predictions from an Arduino-powered external device, enabling enhanced interaction and data integration. A
scoring mechanism updates dynamically based on baseball detections and BLE input, providing a seamless user
experience. Our solution demonstrates the potential of combining modern computer vision and BLE
communication for interactive sports analytics.

2. Block Diagram

3. Dataset Sourcing
For dataset creation, we collected a total of 200 samples each for diagonal, vertical, and horizontal

swings, as well as an additional 50 samples for the idle class. To acquire each sample, we first connected the
Arduino Nano 33 BLE Sense to Edge Impulse. We then set the window size to 1.5s, and executed the
appropriate motion (at a constant, relatively moderate speed) while holding the Arduino in the palm of our
hands. During the cleaning process, we identified and removed examples that appeared to be outliers, such as
instances where the motion did not conform to the expected patterns or contained significant noise. This step



ensured the dataset's quality and consistency, providing a reliable foundation for training and evaluating the
system’s motion classification performance. We also cropped each sample to be exactly one second long,
removing potential noise at the beginning and end of the recording.

4. Feature Extraction
We focused on spectral features to capture the frequency-domain characteristics of the motion data, as

we did in the Motion Classification assignment. Using Fast Fourier Transform (FFT) with overlapping frames,
we analyzed the accelerometer signals to extract meaningful patterns that differentiate between diagonal, vertical,
and horizontal swings, as well as the idle class. We also increased the FFT frame length from 32 to 128 samples,
as we thought this would lead to improved frequency resolution and capture more detailed patterns in the
motion data. This adjustment proved particularly effective for improving the model's ability to distinguish
between vertical swings and diagonal swings, where subtle differences in frequency content had previously led to
slight classification difficulties.

5. Classifier Architecture
We experimented with different classifiers and ultimately selected the one that provided the best balance

of accuracy and performance for our dataset. We ultimately settled on a neural network trained over 50 training
cycles, with a learning rate of 0.005 and two 20-neuron dense layers between the input and output layers. The
model initially had only 10 neurons in the second layer, but the resulting accuracy (~89%) and confusion matrix
revealed that it was overfitting slightly. We then tried decreasing the learning rate to 0.004 or 0.001, increasing
the number of training cycles to 60 or 70, and a combination of each method. However, our training accuracy
would not go above 90%, and our test accuracy hovered around 88%. We then found that increasing the second
dense layer to 20 neurons increased our training and test accuracies to 91.1% and 93.98%, respectively. This is
because increasing the layer size increases the non-linearity of the model, allowing it to generalize without
overfitting so much since each additional neuron has the capacity to capture a different feature or pattern.



6. ConfusionMatrix and Accuracy
Training Performance:

Testing Performance:

7. Deployment Method
To deploy our model, we used Edge Impulse’s Arduino Library with an Arduino Nano 33 BLE Sense as

the target device. We then configured the resulting .ino sketch file, initially in a similar manner to the Motion
Classification assignment: initially, the sketch only processed accelerometer data, but we expanded it to also
include gyroscope data by adjusting the buffer size and indexing. Specifically, we ensured that the buffer could
store both accelerometer and gyroscope readings by re-indexing the data points and adding the necessary lines of
code to read the gyroscope sensor at the end of the buffer. To ensure data quality, I added a range check that
capped any readings exceeding the predefined maximum range (±2g for accelerometer data), and then converted
the accelerometer values to meters per second squared (m/s²) using the CONVERT_G_TO_MS2 constant
(whose value was 9.80665f).

Additionally, we made modifications to the smoothing function. Initially, the predictions were not
consistently stable, so we adjusted the smoothing settings to improve prediction accuracy and reliability. I



configured the smoothing function to require predictions to match for 10 out of 20 frames before they would
be considered valid, with a minimum confidence level of 0.7. This adjustment ensured that predictions were
only transmitted when sufficiently confident, helping to reduce false positives or misclassifications.

We also used the AduinoBLE library to integrate BLE communication, allowing us to transmit each
prediction over a 32-byte characteristic to a laptop, which contained our computer vision code. Essentially, using
multitasking via the asyncio library, we implemented a system in which a YOLOv8mmodel continuously
analyzes webcam video frames to detect baseballs, which fall under the “sports ball’ category. When a baseball is
detected, the system checks if a non-idle prediction was received from the Arduino within the past 5 seconds,
then increments the score and prints the prediction to the terminal.

8. Challenges & Lessons Learned
Our project taught us to pay close attention to the limiting factors of our design; integrating the CV2

object tracking together with the incoming BLE data was not problematic, but the series of sensor inputs
introduced a noticeable delay to the final product. It was because of this latency that we reworked our project
idea to involve the target object starting in the camera frame rather than entering view mid-air. The
timing-intensive operation of the system also required a fast response from the Arduino board–about 1s
maximum–to accurately register against baseballs in the air, which was not fully achievable. Regardless, keeping
these concerns in mind helped us to think more deeply about the design process, and a solution for lowering the
response time could certainly be achieved given more time.


